Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{\left(\frac{3}{12}+\frac{2}{12}-\frac{1}{2}\right)\times 36}{-0.6}-1^{2}
Least common multiple of 4 and 6 is 12. Convert \frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{\left(\frac{3+2}{12}-\frac{1}{2}\right)\times 36}{-0.6}-1^{2}
Since \frac{3}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{5}{12}-\frac{1}{2}\right)\times 36}{-0.6}-1^{2}
Add 3 and 2 to get 5.
\frac{\left(\frac{5}{12}-\frac{6}{12}\right)\times 36}{-0.6}-1^{2}
Least common multiple of 12 and 2 is 12. Convert \frac{5}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{\frac{5-6}{12}\times 36}{-0.6}-1^{2}
Since \frac{5}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{12}\times 36}{-0.6}-1^{2}
Subtract 6 from 5 to get -1.
\frac{\frac{-36}{12}}{-0.6}-1^{2}
Express -\frac{1}{12}\times 36 as a single fraction.
\frac{-3}{-0.6}-1^{2}
Divide -36 by 12 to get -3.
\frac{-30}{-6}-1^{2}
Expand \frac{-3}{-0.6} by multiplying both numerator and the denominator by 10.
5-1^{2}
Divide -30 by -6 to get 5.
5-1
Calculate 1 to the power of 2 and get 1.
4
Subtract 1 from 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}