Evaluate
\frac{\left(x-3y\right)\left(5x-y\right)}{15}
Expand
-\frac{16xy}{15}+\frac{x^{2}}{3}+\frac{y^{2}}{5}
Share
Copied to clipboard
\frac{1}{3}xx+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Apply the distributive property by multiplying each term of \frac{1}{3}x-y by each term of x-\frac{1}{5}y.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply y and y to get y^{2}.
\frac{1}{3}x^{2}+\frac{1\left(-1\right)}{3\times 5}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply \frac{1}{3} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x^{2}+\frac{-1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 5}.
\frac{1}{3}x^{2}-\frac{1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
\frac{1}{3}x^{2}-\frac{16}{15}xy-y^{2}\left(-\frac{1}{5}\right)
Combine -\frac{1}{15}xy and -yx to get -\frac{16}{15}xy.
\frac{1}{3}x^{2}-\frac{16}{15}xy+\frac{1}{5}y^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
\frac{1}{3}xx+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Apply the distributive property by multiplying each term of \frac{1}{3}x-y by each term of x-\frac{1}{5}y.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply y and y to get y^{2}.
\frac{1}{3}x^{2}+\frac{1\left(-1\right)}{3\times 5}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply \frac{1}{3} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x^{2}+\frac{-1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 5}.
\frac{1}{3}x^{2}-\frac{1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
\frac{1}{3}x^{2}-\frac{16}{15}xy-y^{2}\left(-\frac{1}{5}\right)
Combine -\frac{1}{15}xy and -yx to get -\frac{16}{15}xy.
\frac{1}{3}x^{2}-\frac{16}{15}xy+\frac{1}{5}y^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}