Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}xx+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Apply the distributive property by multiplying each term of \frac{1}{3}x-y by each term of x-\frac{1}{5}y.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply y and y to get y^{2}.
\frac{1}{3}x^{2}+\frac{1\left(-1\right)}{3\times 5}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply \frac{1}{3} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x^{2}+\frac{-1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 5}.
\frac{1}{3}x^{2}-\frac{1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
\frac{1}{3}x^{2}-\frac{16}{15}xy-y^{2}\left(-\frac{1}{5}\right)
Combine -\frac{1}{15}xy and -yx to get -\frac{16}{15}xy.
\frac{1}{3}x^{2}-\frac{16}{15}xy+\frac{1}{5}y^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
\frac{1}{3}xx+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Apply the distributive property by multiplying each term of \frac{1}{3}x-y by each term of x-\frac{1}{5}y.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y\left(-\frac{1}{5}\right)y
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-\frac{1}{5}\right)y-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply y and y to get y^{2}.
\frac{1}{3}x^{2}+\frac{1\left(-1\right)}{3\times 5}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Multiply \frac{1}{3} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}x^{2}+\frac{-1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 5}.
\frac{1}{3}x^{2}-\frac{1}{15}xy-yx-y^{2}\left(-\frac{1}{5}\right)
Fraction \frac{-1}{15} can be rewritten as -\frac{1}{15} by extracting the negative sign.
\frac{1}{3}x^{2}-\frac{16}{15}xy-y^{2}\left(-\frac{1}{5}\right)
Combine -\frac{1}{15}xy and -yx to get -\frac{16}{15}xy.
\frac{1}{3}x^{2}-\frac{16}{15}xy+\frac{1}{5}y^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.