Evaluate
\frac{307}{15}\approx 20.466666667
Factor
\frac{307}{3 \cdot 5} = 20\frac{7}{15} = 20.466666666666665
Share
Copied to clipboard
\frac{1}{3}\times 1-2\times 1^{2}+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Calculate 1 to the power of 3 and get 1.
\frac{1}{3}-2\times 1^{2}+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply \frac{1}{3} and 1 to get \frac{1}{3}.
\frac{1}{3}-2\times 1+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Calculate 1 to the power of 2 and get 1.
\frac{1}{3}-2+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply 2 and 1 to get 2.
\frac{1}{3}-\frac{6}{3}+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Convert 2 to fraction \frac{6}{3}.
\frac{1-6}{3}+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Since \frac{1}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}+4\times 1-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Subtract 6 from 1 to get -5.
-\frac{5}{3}+4-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply 4 and 1 to get 4.
-\frac{5}{3}+\frac{12}{3}-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Convert 4 to fraction \frac{12}{3}.
\frac{-5+12}{3}-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Since -\frac{5}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
\frac{7}{3}-\frac{1}{5}\times 1^{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Add -5 and 12 to get 7.
\frac{7}{3}-\frac{1}{5}\times 1-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Calculate 1 to the power of 5 and get 1.
\frac{7}{3}-\frac{1}{5}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply \frac{1}{5} and 1 to get \frac{1}{5}.
\frac{35}{15}-\frac{3}{15}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Least common multiple of 3 and 5 is 15. Convert \frac{7}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{35-3}{15}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Since \frac{35}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{15}-\left(\frac{1}{3}\left(-2\right)^{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Subtract 3 from 35 to get 32.
\frac{32}{15}-\left(\frac{1}{3}\left(-8\right)-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Calculate -2 to the power of 3 and get -8.
\frac{32}{15}-\left(\frac{-8}{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply \frac{1}{3} and -8 to get \frac{-8}{3}.
\frac{32}{15}-\left(-\frac{8}{3}-2\left(-2\right)^{2}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{32}{15}-\left(-\frac{8}{3}-2\times 4+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Calculate -2 to the power of 2 and get 4.
\frac{32}{15}-\left(-\frac{8}{3}-8+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Multiply 2 and 4 to get 8.
\frac{32}{15}-\left(-\frac{8}{3}-\frac{24}{3}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Convert 8 to fraction \frac{24}{3}.
\frac{32}{15}-\left(\frac{-8-24}{3}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Since -\frac{8}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{15}-\left(-\frac{32}{3}+4\left(-2\right)-\frac{1}{6}\left(-2\right)\right)
Subtract 24 from -8 to get -32.
\frac{32}{15}-\left(-\frac{32}{3}-8-\frac{1}{6}\left(-2\right)\right)
Multiply 4 and -2 to get -8.
\frac{32}{15}-\left(-\frac{32}{3}-\frac{24}{3}-\frac{1}{6}\left(-2\right)\right)
Convert 8 to fraction \frac{24}{3}.
\frac{32}{15}-\left(\frac{-32-24}{3}-\frac{1}{6}\left(-2\right)\right)
Since -\frac{32}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{15}-\left(-\frac{56}{3}-\frac{1}{6}\left(-2\right)\right)
Subtract 24 from -32 to get -56.
\frac{32}{15}-\left(-\frac{56}{3}-\frac{-2}{6}\right)
Multiply \frac{1}{6} and -2 to get \frac{-2}{6}.
\frac{32}{15}-\left(-\frac{56}{3}-\left(-\frac{1}{3}\right)\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{32}{15}-\left(-\frac{56}{3}+\frac{1}{3}\right)
The opposite of -\frac{1}{3} is \frac{1}{3}.
\frac{32}{15}-\frac{-56+1}{3}
Since -\frac{56}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{32}{15}-\left(-\frac{55}{3}\right)
Add -56 and 1 to get -55.
\frac{32}{15}+\frac{55}{3}
The opposite of -\frac{55}{3} is \frac{55}{3}.
\frac{32}{15}+\frac{275}{15}
Least common multiple of 15 and 3 is 15. Convert \frac{32}{15} and \frac{55}{3} to fractions with denominator 15.
\frac{32+275}{15}
Since \frac{32}{15} and \frac{275}{15} have the same denominator, add them by adding their numerators.
\frac{307}{15}
Add 32 and 275 to get 307.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}