Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}x\right)^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Consider \left(\frac{1}{2}x-\frac{1}{4}y\right)\left(\frac{1}{2}x+\frac{1}{4}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{1}{4}\right)^{2}y^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Expand \left(\frac{1}{4}y\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}x\right)^{2}-y^{2}
Consider \left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}\right)^{2}x^{2}-y^{2}
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\frac{9}{16}x^{2}-y^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{13}{16}x^{2}-\frac{1}{16}y^{2}-y^{2}
Combine \frac{1}{4}x^{2} and \frac{9}{16}x^{2} to get \frac{13}{16}x^{2}.
\frac{13}{16}x^{2}-\frac{17}{16}y^{2}
Combine -\frac{1}{16}y^{2} and -y^{2} to get -\frac{17}{16}y^{2}.
\left(\frac{1}{2}x\right)^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Consider \left(\frac{1}{2}x-\frac{1}{4}y\right)\left(\frac{1}{2}x+\frac{1}{4}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{1}{4}y\right)^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{1}{4}\right)^{2}y^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Expand \left(\frac{1}{4}y\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right)
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}x\right)^{2}-y^{2}
Consider \left(\frac{3}{4}x-y\right)\left(\frac{3}{4}x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\left(\frac{3}{4}\right)^{2}x^{2}-y^{2}
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{16}y^{2}+\frac{9}{16}x^{2}-y^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{13}{16}x^{2}-\frac{1}{16}y^{2}-y^{2}
Combine \frac{1}{4}x^{2} and \frac{9}{16}x^{2} to get \frac{13}{16}x^{2}.
\frac{13}{16}x^{2}-\frac{17}{16}y^{2}
Combine -\frac{1}{16}y^{2} and -y^{2} to get -\frac{17}{16}y^{2}.