Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}x\times 3x+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{3}y by each term of 3x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 3+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}+\frac{1\left(-1\right)}{2\times 2}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x^{2}+\frac{-1}{4}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{2}x^{2}-\frac{1}{4}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{1}{3}y\left(-\frac{1}{2}\right)
Cancel out 3 and 3.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{1\left(-1\right)}{3\times 2}y
Multiply \frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{-1}{6}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 2}.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx-\frac{1}{6}y
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
\frac{1}{2}x\times 3x+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of \frac{1}{2}x+\frac{1}{3}y by each term of 3x-\frac{1}{2}.
\frac{1}{2}x^{2}\times 3+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{3}{2}x^{2}+\frac{1}{2}x\left(-\frac{1}{2}\right)+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{3}{2}x^{2}+\frac{1\left(-1\right)}{2\times 2}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x^{2}+\frac{-1}{4}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{2}x^{2}-\frac{1}{4}x+\frac{1}{3}y\times 3x+\frac{1}{3}y\left(-\frac{1}{2}\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{1}{3}y\left(-\frac{1}{2}\right)
Cancel out 3 and 3.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{1\left(-1\right)}{3\times 2}y
Multiply \frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx+\frac{-1}{6}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{3\times 2}.
\frac{3}{2}x^{2}-\frac{1}{4}x+yx-\frac{1}{6}y
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.