Evaluate
-ab+\frac{b^{2}}{6}-\frac{a^{2}}{4}
Expand
-ab+\frac{b^{2}}{6}-\frac{a^{2}}{4}
Share
Copied to clipboard
\frac{1}{2}a\times \frac{3}{2}a+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b\left(-\frac{1}{2}\right)b-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Apply the distributive property by multiplying each term of \frac{1}{2}a+\frac{2}{3}b by each term of \frac{3}{2}a-\frac{1}{2}b.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b\left(-\frac{1}{2}\right)b-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply b and b to get b^{2}.
\frac{1\times 3}{2\times 2}a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{3}{4}a^{2}+\frac{1\left(-1\right)}{2\times 2}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{-1}{4}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{4}a^{2}-\frac{1}{4}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{4}a^{2}-\frac{1}{4}ab+ba+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Combine -\frac{1}{4}ab and ba to get \frac{3}{4}ab.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{2\left(-1\right)}{3\times 2}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{2}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{-1}{3}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Cancel out 2 in both numerator and denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a\times 2a+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b\left(-\frac{1}{2}\right)b\right)
Apply the distributive property by multiplying each term of \frac{1}{2}a+b by each term of 2a-\frac{1}{2}b.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a^{2}\times 2+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b\left(-\frac{1}{2}\right)b\right)
Multiply a and a to get a^{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a^{2}\times 2+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Multiply b and b to get b^{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Cancel out 2 and 2.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{1\left(-1\right)}{2\times 2}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{-1}{4}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}-\frac{1}{4}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{7}{4}ab+b^{2}\left(-\frac{1}{2}\right)\right)
Combine -\frac{1}{4}ab and 2ba to get \frac{7}{4}ab.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-a^{2}-\frac{7}{4}ab-b^{2}\left(-\frac{1}{2}\right)
To find the opposite of a^{2}+\frac{7}{4}ab+b^{2}\left(-\frac{1}{2}\right), find the opposite of each term.
-\frac{1}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\frac{7}{4}ab-b^{2}\left(-\frac{1}{2}\right)
Combine \frac{3}{4}a^{2} and -a^{2} to get -\frac{1}{4}a^{2}.
-\frac{1}{4}a^{2}-ab-\frac{1}{3}b^{2}-b^{2}\left(-\frac{1}{2}\right)
Combine \frac{3}{4}ab and -\frac{7}{4}ab to get -ab.
-\frac{1}{4}a^{2}-ab-\frac{1}{3}b^{2}+\frac{1}{2}b^{2}
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
-\frac{1}{4}a^{2}-ab+\frac{1}{6}b^{2}
Combine -\frac{1}{3}b^{2} and \frac{1}{2}b^{2} to get \frac{1}{6}b^{2}.
\frac{1}{2}a\times \frac{3}{2}a+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b\left(-\frac{1}{2}\right)b-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Apply the distributive property by multiplying each term of \frac{1}{2}a+\frac{2}{3}b by each term of \frac{3}{2}a-\frac{1}{2}b.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b\left(-\frac{1}{2}\right)b-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply a and a to get a^{2}.
\frac{1}{2}a^{2}\times \frac{3}{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply b and b to get b^{2}.
\frac{1\times 3}{2\times 2}a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{3}{4}a^{2}+\frac{1\left(-1\right)}{2\times 2}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{-1}{4}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{4}a^{2}-\frac{1}{4}ab+\frac{2}{3}b\times \frac{3}{2}a+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{4}a^{2}-\frac{1}{4}ab+ba+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{2}{3}b^{2}\left(-\frac{1}{2}\right)-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Combine -\frac{1}{4}ab and ba to get \frac{3}{4}ab.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{2\left(-1\right)}{3\times 2}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Multiply \frac{2}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab+\frac{-1}{3}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Cancel out 2 in both numerator and denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a+b\right)\left(2a-\frac{1}{2}b\right)
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a\times 2a+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b\left(-\frac{1}{2}\right)b\right)
Apply the distributive property by multiplying each term of \frac{1}{2}a+b by each term of 2a-\frac{1}{2}b.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a^{2}\times 2+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b\left(-\frac{1}{2}\right)b\right)
Multiply a and a to get a^{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(\frac{1}{2}a^{2}\times 2+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Multiply b and b to get b^{2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{1}{2}a\left(-\frac{1}{2}\right)b+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Cancel out 2 and 2.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{1\left(-1\right)}{2\times 2}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Multiply \frac{1}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{-1}{4}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 2}.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}-\frac{1}{4}ab+2ba+b^{2}\left(-\frac{1}{2}\right)\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\left(a^{2}+\frac{7}{4}ab+b^{2}\left(-\frac{1}{2}\right)\right)
Combine -\frac{1}{4}ab and 2ba to get \frac{7}{4}ab.
\frac{3}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-a^{2}-\frac{7}{4}ab-b^{2}\left(-\frac{1}{2}\right)
To find the opposite of a^{2}+\frac{7}{4}ab+b^{2}\left(-\frac{1}{2}\right), find the opposite of each term.
-\frac{1}{4}a^{2}+\frac{3}{4}ab-\frac{1}{3}b^{2}-\frac{7}{4}ab-b^{2}\left(-\frac{1}{2}\right)
Combine \frac{3}{4}a^{2} and -a^{2} to get -\frac{1}{4}a^{2}.
-\frac{1}{4}a^{2}-ab-\frac{1}{3}b^{2}-b^{2}\left(-\frac{1}{2}\right)
Combine \frac{3}{4}ab and -\frac{7}{4}ab to get -ab.
-\frac{1}{4}a^{2}-ab-\frac{1}{3}b^{2}+\frac{1}{2}b^{2}
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
-\frac{1}{4}a^{2}-ab+\frac{1}{6}b^{2}
Combine -\frac{1}{3}b^{2} and \frac{1}{2}b^{2} to get \frac{1}{6}b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}