Evaluate
\frac{4096}{3}\approx 1365.333333333
Factor
\frac{2 ^ {12}}{3} = 1365\frac{1}{3} = 1365.3333333333333
Share
Copied to clipboard
\frac{\left(\frac{1}{2}\right)^{0}\times \left(\frac{1}{2}\right)^{-12}}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
To raise a power to another power, multiply the exponents. Multiply 3 and -4 to get -12.
\frac{\left(\frac{1}{2}\right)^{-12}}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
To multiply powers of the same base, add their exponents. Add 0 and -12 to get -12.
\frac{4096}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
Calculate \frac{1}{2} to the power of -12 and get 4096.
\frac{4096}{\frac{1}{19683}}\times \left(\frac{1}{3}\right)^{10}
Calculate \frac{1}{3} to the power of 9 and get \frac{1}{19683}.
4096\times 19683\times \left(\frac{1}{3}\right)^{10}
Divide 4096 by \frac{1}{19683} by multiplying 4096 by the reciprocal of \frac{1}{19683}.
80621568\times \left(\frac{1}{3}\right)^{10}
Multiply 4096 and 19683 to get 80621568.
80621568\times \frac{1}{59049}
Calculate \frac{1}{3} to the power of 10 and get \frac{1}{59049}.
\frac{4096}{3}
Multiply 80621568 and \frac{1}{59049} to get \frac{4096}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}