Solve for X
X=\frac{\left(\frac{1}{27}\right)^{x}}{1889568}
Solve for x (complex solution)
x=\frac{-\ln(X)+\ln(\frac{1}{1889568})}{3\ln(3)}-\frac{2\pi n_{1}i}{3\ln(3)}
n_{1}\in \mathrm{Z}
X\neq 0
Solve for x
x=\frac{-\ln(X)+\ln(\frac{1}{1889568})}{3\ln(3)}
X>0
Graph
Share
Copied to clipboard
32X\times \left(\frac{1}{3}\right)^{-10}=\left(\frac{1}{3}\right)^{3x}
Calculate \frac{1}{2} to the power of -5 and get 32.
32X\times 59049=\left(\frac{1}{3}\right)^{3x}
Calculate \frac{1}{3} to the power of -10 and get 59049.
1889568X=\left(\frac{1}{3}\right)^{3x}
Multiply 32 and 59049 to get 1889568.
1889568X=\left(\frac{1}{27}\right)^{x}
The equation is in standard form.
\frac{1889568X}{1889568}=\frac{\left(\frac{1}{27}\right)^{x}}{1889568}
Divide both sides by 1889568.
X=\frac{\left(\frac{1}{27}\right)^{x}}{1889568}
Dividing by 1889568 undoes the multiplication by 1889568.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}