Evaluate
-4\left(f-1\right)^{2}
Expand
-4f^{2}+8f-4
Quiz
Polynomial
5 problems similar to:
( \frac { 1 } { 2 } ( f - 1 ) ^ { 2 } ( 2 ) ^ { 2 } ( - 1 ) ( 2 ) )
Share
Copied to clipboard
\frac{1}{2}\left(f-1\right)^{2}\times 2^{3}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}\left(f^{2}-2f+1\right)\times 2^{3}\left(-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(f-1\right)^{2}.
\frac{1}{2}\left(f^{2}-2f+1\right)\times 8\left(-1\right)
Calculate 2 to the power of 3 and get 8.
4\left(f^{2}-2f+1\right)\left(-1\right)
Multiply \frac{1}{2} and 8 to get 4.
-4\left(f^{2}-2f+1\right)
Multiply 4 and -1 to get -4.
-4f^{2}+8f-4
Use the distributive property to multiply -4 by f^{2}-2f+1.
\frac{1}{2}\left(f-1\right)^{2}\times 2^{3}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{2}\left(f^{2}-2f+1\right)\times 2^{3}\left(-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(f-1\right)^{2}.
\frac{1}{2}\left(f^{2}-2f+1\right)\times 8\left(-1\right)
Calculate 2 to the power of 3 and get 8.
4\left(f^{2}-2f+1\right)\left(-1\right)
Multiply \frac{1}{2} and 8 to get 4.
-4\left(f^{2}-2f+1\right)
Multiply 4 and -1 to get -4.
-4f^{2}+8f-4
Use the distributive property to multiply -4 by f^{2}-2f+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}