Evaluate
-8x^{2}-\frac{1}{12}
Expand
-8x^{2}-\frac{1}{12}
Graph
Share
Copied to clipboard
\frac{1}{4}-x^{2}+\frac{1}{9}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Consider \left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{13}{36}-x^{2}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Add \frac{1}{4} and \frac{1}{9} to get \frac{13}{36}.
\frac{13}{36}-17x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Combine -x^{2} and -16x^{2} to get -17x^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-\left(3x\right)^{2}\right)
Consider \left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{2}{3}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
\frac{13}{36}-17x^{2}-\frac{4}{9}+9x^{2}
To find the opposite of \frac{4}{9}-9x^{2}, find the opposite of each term.
-\frac{1}{12}-17x^{2}+9x^{2}
Subtract \frac{4}{9} from \frac{13}{36} to get -\frac{1}{12}.
-\frac{1}{12}-8x^{2}
Combine -17x^{2} and 9x^{2} to get -8x^{2}.
\frac{1}{4}-x^{2}+\frac{1}{9}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Consider \left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{13}{36}-x^{2}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Add \frac{1}{4} and \frac{1}{9} to get \frac{13}{36}.
\frac{13}{36}-17x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Combine -x^{2} and -16x^{2} to get -17x^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-\left(3x\right)^{2}\right)
Consider \left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{2}{3}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
\frac{13}{36}-17x^{2}-\frac{4}{9}+9x^{2}
To find the opposite of \frac{4}{9}-9x^{2}, find the opposite of each term.
-\frac{1}{12}-17x^{2}+9x^{2}
Subtract \frac{4}{9} from \frac{13}{36} to get -\frac{1}{12}.
-\frac{1}{12}-8x^{2}
Combine -17x^{2} and 9x^{2} to get -8x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}