Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{4}-x^{2}+\frac{1}{9}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Consider \left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{13}{36}-x^{2}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Add \frac{1}{4} and \frac{1}{9} to get \frac{13}{36}.
\frac{13}{36}-17x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Combine -x^{2} and -16x^{2} to get -17x^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-\left(3x\right)^{2}\right)
Consider \left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{2}{3}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
\frac{13}{36}-17x^{2}-\frac{4}{9}+9x^{2}
To find the opposite of \frac{4}{9}-9x^{2}, find the opposite of each term.
-\frac{1}{12}-17x^{2}+9x^{2}
Subtract \frac{4}{9} from \frac{13}{36} to get -\frac{1}{12}.
-\frac{1}{12}-8x^{2}
Combine -17x^{2} and 9x^{2} to get -8x^{2}.
\frac{1}{4}-x^{2}+\frac{1}{9}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Consider \left(\frac{1}{2}+x\right)\left(\frac{1}{2}-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
\frac{13}{36}-x^{2}-16x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Add \frac{1}{4} and \frac{1}{9} to get \frac{13}{36}.
\frac{13}{36}-17x^{2}-\left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right)
Combine -x^{2} and -16x^{2} to get -17x^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-\left(3x\right)^{2}\right)
Consider \left(\frac{2}{3}+3x\right)\left(\frac{2}{3}-3x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{2}{3}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
\frac{13}{36}-17x^{2}-\left(\frac{4}{9}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
\frac{13}{36}-17x^{2}-\frac{4}{9}+9x^{2}
To find the opposite of \frac{4}{9}-9x^{2}, find the opposite of each term.
-\frac{1}{12}-17x^{2}+9x^{2}
Subtract \frac{4}{9} from \frac{13}{36} to get -\frac{1}{12}.
-\frac{1}{12}-8x^{2}
Combine -17x^{2} and 9x^{2} to get -8x^{2}.