Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\left(\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2-\sqrt{3}}{4-3}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Square 2. Square \sqrt{3}.
\left(\frac{2-\sqrt{3}}{1}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Subtract 3 from 4 to get 1.
\left(2-\sqrt{3}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Anything divided by one gives itself.
4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
4-4\sqrt{3}+3-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
7-4\sqrt{3}-\left(\frac{1}{2-\sqrt{3}}\right)^{2}
Add 4 and 3 to get 7.
7-4\sqrt{3}-\left(\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\right)^{2}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
7-4\sqrt{3}-\left(\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-4\sqrt{3}-\left(\frac{2+\sqrt{3}}{4-3}\right)^{2}
Square 2. Square \sqrt{3}.
7-4\sqrt{3}-\left(\frac{2+\sqrt{3}}{1}\right)^{2}
Subtract 3 from 4 to get 1.
7-4\sqrt{3}-\left(2+\sqrt{3}\right)^{2}
Anything divided by one gives itself.
7-4\sqrt{3}-\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
7-4\sqrt{3}-\left(4+4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
7-4\sqrt{3}-\left(7+4\sqrt{3}\right)
Add 4 and 3 to get 7.
7-4\sqrt{3}-7-4\sqrt{3}
To find the opposite of 7+4\sqrt{3}, find the opposite of each term.
-4\sqrt{3}-4\sqrt{3}
Subtract 7 from 7 to get 0.
-8\sqrt{3}
Combine -4\sqrt{3} and -4\sqrt{3} to get -8\sqrt{3}.