Evaluate
-\frac{133}{4}=-33.25
Factor
-\frac{133}{4} = -33\frac{1}{4} = -33.25
Share
Copied to clipboard
\left(\frac{1\left(-1\right)}{10\times 4}+\frac{1}{5}-\frac{1}{3}\right)\times 210
Multiply \frac{1}{10} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{-1}{40}+\frac{1}{5}-\frac{1}{3}\right)\times 210
Do the multiplications in the fraction \frac{1\left(-1\right)}{10\times 4}.
\left(-\frac{1}{40}+\frac{1}{5}-\frac{1}{3}\right)\times 210
Fraction \frac{-1}{40} can be rewritten as -\frac{1}{40} by extracting the negative sign.
\left(-\frac{1}{40}+\frac{8}{40}-\frac{1}{3}\right)\times 210
Least common multiple of 40 and 5 is 40. Convert -\frac{1}{40} and \frac{1}{5} to fractions with denominator 40.
\left(\frac{-1+8}{40}-\frac{1}{3}\right)\times 210
Since -\frac{1}{40} and \frac{8}{40} have the same denominator, add them by adding their numerators.
\left(\frac{7}{40}-\frac{1}{3}\right)\times 210
Add -1 and 8 to get 7.
\left(\frac{21}{120}-\frac{40}{120}\right)\times 210
Least common multiple of 40 and 3 is 120. Convert \frac{7}{40} and \frac{1}{3} to fractions with denominator 120.
\frac{21-40}{120}\times 210
Since \frac{21}{120} and \frac{40}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{120}\times 210
Subtract 40 from 21 to get -19.
\frac{-19\times 210}{120}
Express -\frac{19}{120}\times 210 as a single fraction.
\frac{-3990}{120}
Multiply -19 and 210 to get -3990.
-\frac{133}{4}
Reduce the fraction \frac{-3990}{120} to lowest terms by extracting and canceling out 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}