Evaluate
\frac{5}{16}=0.3125
Factor
\frac{5}{2 ^ {4}} = 0.3125
Share
Copied to clipboard
\frac{1}{4}+\frac{1}{4\times 7}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Multiply 1 and 4 to get 4.
\frac{1}{4}+\frac{1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Multiply 4 and 7 to get 28.
\frac{7}{28}+\frac{1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Least common multiple of 4 and 28 is 28. Convert \frac{1}{4} and \frac{1}{28} to fractions with denominator 28.
\frac{7+1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Since \frac{7}{28} and \frac{1}{28} have the same denominator, add them by adding their numerators.
\frac{8}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Add 7 and 1 to get 8.
\frac{2}{7}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Reduce the fraction \frac{8}{28} to lowest terms by extracting and canceling out 4.
\frac{2}{7}+\frac{1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Multiply 7 and 10 to get 70.
\frac{20}{70}+\frac{1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Least common multiple of 7 and 70 is 70. Convert \frac{2}{7} and \frac{1}{70} to fractions with denominator 70.
\frac{20+1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Since \frac{20}{70} and \frac{1}{70} have the same denominator, add them by adding their numerators.
\frac{21}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Add 20 and 1 to get 21.
\frac{3}{10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Reduce the fraction \frac{21}{70} to lowest terms by extracting and canceling out 7.
\frac{3}{10}+\frac{1}{130}+\frac{1}{13\times 16}
Multiply 10 and 13 to get 130.
\frac{39}{130}+\frac{1}{130}+\frac{1}{13\times 16}
Least common multiple of 10 and 130 is 130. Convert \frac{3}{10} and \frac{1}{130} to fractions with denominator 130.
\frac{39+1}{130}+\frac{1}{13\times 16}
Since \frac{39}{130} and \frac{1}{130} have the same denominator, add them by adding their numerators.
\frac{40}{130}+\frac{1}{13\times 16}
Add 39 and 1 to get 40.
\frac{4}{13}+\frac{1}{13\times 16}
Reduce the fraction \frac{40}{130} to lowest terms by extracting and canceling out 10.
\frac{4}{13}+\frac{1}{208}
Multiply 13 and 16 to get 208.
\frac{64}{208}+\frac{1}{208}
Least common multiple of 13 and 208 is 208. Convert \frac{4}{13} and \frac{1}{208} to fractions with denominator 208.
\frac{64+1}{208}
Since \frac{64}{208} and \frac{1}{208} have the same denominator, add them by adding their numerators.
\frac{65}{208}
Add 64 and 1 to get 65.
\frac{5}{16}
Reduce the fraction \frac{65}{208} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}