Evaluate
\frac{8\sqrt{10}}{9}-\frac{4\sqrt{2}}{3}-\frac{16\sqrt{5}}{3}+\frac{118}{9}\approx 2.110710624
Expand
\frac{8 \sqrt{10}}{9} - \frac{4 \sqrt{2}}{3} - \frac{16 \sqrt{5}}{3} + \frac{118}{9} = 2.110710624
Share
Copied to clipboard
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{5-2}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Square \sqrt{5}. Square \sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Subtract 2 from 5 to get 3.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+2}\right)^{2}
Calculate the square root of 4 and get 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}\right)^{2}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{5-4}\right)^{2}
Square \sqrt{5}. Square 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{1}\right)^{2}
Subtract 4 from 5 to get 1.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\sqrt{5}-2\right)^{2}
Anything divided by one gives itself.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{3\left(\sqrt{5}-2\right)}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5}-2 times \frac{3}{3}.
\left(\frac{\sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Since \frac{\sqrt{5}+\sqrt{2}}{3} and \frac{3\left(\sqrt{5}-2\right)}{3} have the same denominator, add them by adding their numerators.
\left(\frac{\sqrt{5}+\sqrt{2}+3\sqrt{5}-6}{3}\right)^{2}
Do the multiplications in \sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right).
\left(\frac{4\sqrt{5}+\sqrt{2}-6}{3}\right)^{2}
Do the calculations in \sqrt{5}+\sqrt{2}+3\sqrt{5}-6.
\frac{\left(4\sqrt{5}+\sqrt{2}-6\right)^{2}}{3^{2}}
To raise \frac{4\sqrt{5}+\sqrt{2}-6}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{8\sqrt{2}\sqrt{5}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Square 4\sqrt{5}+\sqrt{2}-6.
\frac{8\sqrt{10}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{8\sqrt{10}+16\times 5+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
The square of \sqrt{5} is 5.
\frac{8\sqrt{10}+80+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Multiply 16 and 5 to get 80.
\frac{8\sqrt{10}+80+2-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
The square of \sqrt{2} is 2.
\frac{8\sqrt{10}+82-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Add 80 and 2 to get 82.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{3^{2}}
Add 82 and 36 to get 118.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{9}
Calculate 3 to the power of 2 and get 9.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{5-2}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Square \sqrt{5}. Square \sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Subtract 2 from 5 to get 3.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+2}\right)^{2}
Calculate the square root of 4 and get 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}\right)^{2}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{5-4}\right)^{2}
Square \sqrt{5}. Square 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{1}\right)^{2}
Subtract 4 from 5 to get 1.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\sqrt{5}-2\right)^{2}
Anything divided by one gives itself.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{3\left(\sqrt{5}-2\right)}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5}-2 times \frac{3}{3}.
\left(\frac{\sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Since \frac{\sqrt{5}+\sqrt{2}}{3} and \frac{3\left(\sqrt{5}-2\right)}{3} have the same denominator, add them by adding their numerators.
\left(\frac{\sqrt{5}+\sqrt{2}+3\sqrt{5}-6}{3}\right)^{2}
Do the multiplications in \sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right).
\left(\frac{4\sqrt{5}+\sqrt{2}-6}{3}\right)^{2}
Do the calculations in \sqrt{5}+\sqrt{2}+3\sqrt{5}-6.
\frac{\left(4\sqrt{5}+\sqrt{2}-6\right)^{2}}{3^{2}}
To raise \frac{4\sqrt{5}+\sqrt{2}-6}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{8\sqrt{2}\sqrt{5}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Square 4\sqrt{5}+\sqrt{2}-6.
\frac{8\sqrt{10}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{8\sqrt{10}+16\times 5+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
The square of \sqrt{5} is 5.
\frac{8\sqrt{10}+80+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Multiply 16 and 5 to get 80.
\frac{8\sqrt{10}+80+2-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
The square of \sqrt{2} is 2.
\frac{8\sqrt{10}+82-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Add 80 and 2 to get 82.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{3^{2}}
Add 82 and 36 to get 118.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{9}
Calculate 3 to the power of 2 and get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}