Evaluate
-1+i
Real Part
-1
Share
Copied to clipboard
\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(\frac{2i}{2}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
i^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Divide 2i by 2 to get i.
-1+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}}
Calculate i to the power of 6 and get -1.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+i\sqrt{2}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-i\sqrt{2}\right)^{2}.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)}
Calculate -i to the power of 2 and get -1.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-2\right)}
The square of \sqrt{2} is 2.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3+2}
Multiply -1 and -2 to get 2.
-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{5}
Add 3 and 2 to get 5.
-1+\frac{i\left(\sqrt{2}\right)^{2}+i\left(\sqrt{3}\right)^{2}}{5}
Use the distributive property to multiply \sqrt{2}+i\sqrt{3} by \sqrt{3}+i\sqrt{2} and combine like terms.
-1+\frac{2i+i\left(\sqrt{3}\right)^{2}}{5}
The square of \sqrt{2} is 2.
-1+\frac{2i+3i}{5}
The square of \sqrt{3} is 3.
-1+\frac{5i}{5}
Add 2i and 3i to get 5i.
-1+i
Divide 5i by 5 to get i.
Re(\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\left(\frac{2i}{2}\right)^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(i^{6}+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Divide 2i by 2 to get i.
Re(-1+\frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}})
Calculate i to the power of 6 and get -1.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right)})
Rationalize the denominator of \frac{\sqrt{2}+i\sqrt{3}}{\sqrt{3}-i\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+i\sqrt{2}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\sqrt{2}\right)^{2}})
Consider \left(\sqrt{3}-i\sqrt{2}\right)\left(\sqrt{3}+i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\sqrt{2}\right)^{2}})
The square of \sqrt{3} is 3.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}})
Expand \left(-i\sqrt{2}\right)^{2}.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-\left(\sqrt{2}\right)^{2}\right)})
Calculate -i to the power of 2 and get -1.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3-\left(-2\right)})
The square of \sqrt{2} is 2.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{3+2})
Multiply -1 and -2 to get 2.
Re(-1+\frac{\left(\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{3}+i\sqrt{2}\right)}{5})
Add 3 and 2 to get 5.
Re(-1+\frac{i\left(\sqrt{2}\right)^{2}+i\left(\sqrt{3}\right)^{2}}{5})
Use the distributive property to multiply \sqrt{2}+i\sqrt{3} by \sqrt{3}+i\sqrt{2} and combine like terms.
Re(-1+\frac{2i+i\left(\sqrt{3}\right)^{2}}{5})
The square of \sqrt{2} is 2.
Re(-1+\frac{2i+3i}{5})
The square of \sqrt{3} is 3.
Re(-1+\frac{5i}{5})
Add 2i and 3i to get 5i.
Re(-1+i)
Divide 5i by 5 to get i.
-1
The real part of -1+i is -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}