Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(\frac{2i}{2}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
i^{3}-\left(\frac{1-i}{1+i}\right)^{3}
Divide 2i by 2 to get i.
-i-\left(\frac{1-i}{1+i}\right)^{3}
Calculate i to the power of 3 and get -i.
-i-\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
-i-\left(\frac{-2i}{2}\right)^{3}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-i-\left(-i\right)^{3}
Divide -2i by 2 to get -i.
-i-i
Calculate -i to the power of 3 and get i.
-2i
Subtract i from -i to get -2i.
Re(\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\left(\frac{2i}{2}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(i^{3}-\left(\frac{1-i}{1+i}\right)^{3})
Divide 2i by 2 to get i.
Re(-i-\left(\frac{1-i}{1+i}\right)^{3})
Calculate i to the power of 3 and get -i.
Re(-i-\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(-i-\left(\frac{-2i}{2}\right)^{3})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-i-\left(-i\right)^{3})
Divide -2i by 2 to get -i.
Re(-i-i)
Calculate -i to the power of 3 and get i.
Re(-2i)
Subtract i from -i to get -2i.
0
The real part of -2i is 0.