Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2}{1-i}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2}
Add 1 and 1 to get 2.
\left(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2}
Multiply both numerator and denominator of \frac{2}{1-i} by the complex conjugate of the denominator, 1+i.
\left(\frac{2+2i}{2}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2}
Do the multiplications in \frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\left(1+i\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2}
Divide 2+2i by 2 to get 1+i.
2i+\left(\frac{1-1}{1+i}\right)^{2}
Calculate 1+i to the power of 2 and get 2i.
2i+\left(\frac{0}{1+i}\right)^{2}
Subtract 1 from 1 to get 0.
2i+0^{2}
Zero divided by any non-zero number gives zero.
2i+0
Calculate 0 to the power of 2 and get 0.
2i
Anything plus zero gives itself.
Re(\left(\frac{2}{1-i}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2})
Add 1 and 1 to get 2.
Re(\left(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2})
Multiply both numerator and denominator of \frac{2}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\left(\frac{2+2i}{2}\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2})
Do the multiplications in \frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\left(1+i\right)^{2}+\left(\frac{1-1}{1+i}\right)^{2})
Divide 2+2i by 2 to get 1+i.
Re(2i+\left(\frac{1-1}{1+i}\right)^{2})
Calculate 1+i to the power of 2 and get 2i.
Re(2i+\left(\frac{0}{1+i}\right)^{2})
Subtract 1 from 1 to get 0.
Re(2i+0^{2})
Zero divided by any non-zero number gives zero.
Re(2i+0)
Calculate 0 to the power of 2 and get 0.
Re(2i)
Anything plus zero gives itself.
0
The real part of 2i is 0.