Evaluate
\frac{1256-28\sqrt{385}}{9}\approx 78.511147514
Expand
\frac{1256 - 28 \sqrt{385}}{9} = 78.51114751447108
Share
Copied to clipboard
\left(\frac{1+\sqrt{385}}{3}-\frac{5\times 3}{3}\right)^{2}+75
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{3}{3}.
\left(\frac{1+\sqrt{385}-5\times 3}{3}\right)^{2}+75
Since \frac{1+\sqrt{385}}{3} and \frac{5\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1+\sqrt{385}-15}{3}\right)^{2}+75
Do the multiplications in 1+\sqrt{385}-5\times 3.
\left(\frac{-14+\sqrt{385}}{3}\right)^{2}+75
Do the calculations in 1+\sqrt{385}-15.
\frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}}+75
To raise \frac{-14+\sqrt{385}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}}+\frac{75\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 75 times \frac{3^{2}}{3^{2}}.
\frac{\left(-14+\sqrt{385}\right)^{2}+75\times 3^{2}}{3^{2}}
Since \frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}} and \frac{75\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{196-28\sqrt{385}+\left(\sqrt{385}\right)^{2}+675}{3^{2}}
Do the multiplications in \left(-14+\sqrt{385}\right)^{2}+75\times 3^{2}.
\frac{1256-28\sqrt{385}}{3^{2}}
Do the calculations in 196-28\sqrt{385}+\left(\sqrt{385}\right)^{2}+675.
\frac{1256-28\sqrt{385}}{9}
Expand 3^{2}.
\left(\frac{1+\sqrt{385}}{3}-\frac{5\times 3}{3}\right)^{2}+75
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{3}{3}.
\left(\frac{1+\sqrt{385}-5\times 3}{3}\right)^{2}+75
Since \frac{1+\sqrt{385}}{3} and \frac{5\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1+\sqrt{385}-15}{3}\right)^{2}+75
Do the multiplications in 1+\sqrt{385}-5\times 3.
\left(\frac{-14+\sqrt{385}}{3}\right)^{2}+75
Do the calculations in 1+\sqrt{385}-15.
\frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}}+75
To raise \frac{-14+\sqrt{385}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}}+\frac{75\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 75 times \frac{3^{2}}{3^{2}}.
\frac{\left(-14+\sqrt{385}\right)^{2}+75\times 3^{2}}{3^{2}}
Since \frac{\left(-14+\sqrt{385}\right)^{2}}{3^{2}} and \frac{75\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{196-28\sqrt{385}+\left(\sqrt{385}\right)^{2}+675}{3^{2}}
Do the multiplications in \left(-14+\sqrt{385}\right)^{2}+75\times 3^{2}.
\frac{1256-28\sqrt{385}}{3^{2}}
Do the calculations in 196-28\sqrt{385}+\left(\sqrt{385}\right)^{2}+675.
\frac{1256-28\sqrt{385}}{9}
Expand 3^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}