( \frac { 0,06 } { \frac { 3 } { 19 } } + \frac { 0,052 } { ( \frac { 1 } { 2 } ) ^ { - 1 } } \cdot \frac { 6,36 } { \frac { 0,36 } { 3 } } )
Evaluate
1,758
Factor
\frac{3 \cdot 293}{2 ^ {2} \cdot 5 ^ {3}} = 1\frac{379}{500} = 1.758
Share
Copied to clipboard
0,06\times \frac{19}{3}+\frac{0,052}{\left(\frac{1}{2}\right)^{-1}}\times \frac{6,36}{\frac{0,36}{3}}
Divide 0,06 by \frac{3}{19} by multiplying 0,06 by the reciprocal of \frac{3}{19}.
\frac{19}{50}+\frac{0,052}{\left(\frac{1}{2}\right)^{-1}}\times \frac{6,36}{\frac{0,36}{3}}
Multiply 0,06 and \frac{19}{3} to get \frac{19}{50}.
\frac{19}{50}+\frac{0,052}{2}\times \frac{6,36}{\frac{0,36}{3}}
Calculate \frac{1}{2} to the power of -1 and get 2.
\frac{19}{50}+\frac{52}{2000}\times \frac{6,36}{\frac{0,36}{3}}
Expand \frac{0,052}{2} by multiplying both numerator and the denominator by 1000.
\frac{19}{50}+\frac{13}{500}\times \frac{6,36}{\frac{0,36}{3}}
Reduce the fraction \frac{52}{2000} to lowest terms by extracting and canceling out 4.
\frac{19}{50}+\frac{13}{500}\times \frac{6,36\times 3}{0,36}
Divide 6,36 by \frac{0,36}{3} by multiplying 6,36 by the reciprocal of \frac{0,36}{3}.
\frac{19}{50}+\frac{13}{500}\times \frac{19,08}{0,36}
Multiply 6,36 and 3 to get 19,08.
\frac{19}{50}+\frac{13}{500}\times \frac{1908}{36}
Expand \frac{19,08}{0,36} by multiplying both numerator and the denominator by 100.
\frac{19}{50}+\frac{13}{500}\times 53
Divide 1908 by 36 to get 53.
\frac{19}{50}+\frac{689}{500}
Multiply \frac{13}{500} and 53 to get \frac{689}{500}.
\frac{879}{500}
Add \frac{19}{50} and \frac{689}{500} to get \frac{879}{500}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}