Evaluate
\frac{3k\left(27k^{3}+32k^{2}+24\right)}{\left(4k^{2}+3\right)^{2}}
Expand
\frac{3\left(27k^{4}+32k^{3}+24k\right)}{\left(4k^{2}+3\right)^{2}}
Share
Copied to clipboard
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-4\times \frac{-6k}{4k^{2}+3}
To raise \frac{-9k^{2}}{4k^{2}+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{4\left(-6\right)k}{4k^{2}+3}
Express 4\times \frac{-6k}{4k^{2}+3} as a single fraction.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Multiply 4 and -6 to get -24.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k^{2}+3\right)^{2} and 4k^{2}+3 is \left(4k^{2}+3\right)^{2}. Multiply \frac{-24k}{4k^{2}+3} times \frac{4k^{2}+3}{4k^{2}+3}.
\frac{\left(-9k^{2}\right)^{2}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Since \frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} and \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-9\right)^{2}\left(k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Expand \left(-9k^{2}\right)^{2}.
\frac{\left(-9\right)^{2}k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Calculate -9 to the power of 2 and get 81.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k^{2}+3\right)^{2} and 4k^{2}+3 is \left(4k^{2}+3\right)^{2}. Multiply \frac{-24k}{4k^{2}+3} times \frac{4k^{2}+3}{4k^{2}+3}.
\frac{81k^{4}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Since \frac{81k^{4}}{\left(4k^{2}+3\right)^{2}} and \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{81k^{4}+96k^{3}+72k}{\left(4k^{2}+3\right)^{2}}
Do the multiplications in 81k^{4}-\left(-24k\left(4k^{2}+3\right)\right).
\frac{81k^{4}+96k^{3}+72k}{16k^{4}+24k^{2}+9}
Expand \left(4k^{2}+3\right)^{2}.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-4\times \frac{-6k}{4k^{2}+3}
To raise \frac{-9k^{2}}{4k^{2}+3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{4\left(-6\right)k}{4k^{2}+3}
Express 4\times \frac{-6k}{4k^{2}+3} as a single fraction.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Multiply 4 and -6 to get -24.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k^{2}+3\right)^{2} and 4k^{2}+3 is \left(4k^{2}+3\right)^{2}. Multiply \frac{-24k}{4k^{2}+3} times \frac{4k^{2}+3}{4k^{2}+3}.
\frac{\left(-9k^{2}\right)^{2}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Since \frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} and \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-9\right)^{2}\left(k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Expand \left(-9k^{2}\right)^{2}.
\frac{\left(-9\right)^{2}k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Calculate -9 to the power of 2 and get 81.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4k^{2}+3\right)^{2} and 4k^{2}+3 is \left(4k^{2}+3\right)^{2}. Multiply \frac{-24k}{4k^{2}+3} times \frac{4k^{2}+3}{4k^{2}+3}.
\frac{81k^{4}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Since \frac{81k^{4}}{\left(4k^{2}+3\right)^{2}} and \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{81k^{4}+96k^{3}+72k}{\left(4k^{2}+3\right)^{2}}
Do the multiplications in 81k^{4}-\left(-24k\left(4k^{2}+3\right)\right).
\frac{81k^{4}+96k^{3}+72k}{16k^{4}+24k^{2}+9}
Expand \left(4k^{2}+3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}