Evaluate
\frac{25}{36}\approx 0.694444444
Factor
\frac{5 ^ {2}}{2 ^ {2} \cdot 3 ^ {2}} = 0.6944444444444444
Share
Copied to clipboard
\left(\frac{-2}{3}\right)^{-2}\times \left(\frac{2}{3}\right)^{4}+\frac{\left(\frac{1}{2}\right)^{6}}{2^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-\frac{2}{3}\right)^{-2}\times \left(\frac{2}{3}\right)^{4}+\frac{\left(\frac{1}{2}\right)^{6}}{2^{-4}}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{9}{4}\times \left(\frac{2}{3}\right)^{4}+\frac{\left(\frac{1}{2}\right)^{6}}{2^{-4}}
Calculate -\frac{2}{3} to the power of -2 and get \frac{9}{4}.
\frac{9}{4}\times \frac{16}{81}+\frac{\left(\frac{1}{2}\right)^{6}}{2^{-4}}
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{4}{9}+\frac{\left(\frac{1}{2}\right)^{6}}{2^{-4}}
Multiply \frac{9}{4} and \frac{16}{81} to get \frac{4}{9}.
\frac{4}{9}+\frac{\frac{1}{64}}{2^{-4}}
Calculate \frac{1}{2} to the power of 6 and get \frac{1}{64}.
\frac{4}{9}+\frac{\frac{1}{64}}{\frac{1}{16}}
Calculate 2 to the power of -4 and get \frac{1}{16}.
\frac{4}{9}+\frac{1}{64}\times 16
Divide \frac{1}{64} by \frac{1}{16} by multiplying \frac{1}{64} by the reciprocal of \frac{1}{16}.
\frac{4}{9}+\frac{1}{4}
Multiply \frac{1}{64} and 16 to get \frac{1}{4}.
\frac{25}{36}
Add \frac{4}{9} and \frac{1}{4} to get \frac{25}{36}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}