Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{\left(\sqrt{5}-6i\right)\left(\sqrt{5}+6i\right)}
Rationalize the denominator of \frac{-2+1\sqrt{3}}{\sqrt{5}-6i} by multiplying numerator and denominator by \sqrt{5}+6i.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{\left(\sqrt{5}\right)^{2}-\left(-6i\right)^{2}}
Consider \left(\sqrt{5}-6i\right)\left(\sqrt{5}+6i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{5+36}
Square \sqrt{5}. Square -6i.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{41}
Subtract -36 from 5 to get 41.
\frac{-2\sqrt{5}-12i+1\sqrt{3}\sqrt{5}+6i\sqrt{3}}{41}
Apply the distributive property by multiplying each term of -2+1\sqrt{3} by each term of \sqrt{5}+6i.
\frac{-2\sqrt{5}-12i+1\sqrt{15}+6i\sqrt{3}}{41}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-2\sqrt{5}-12i+\sqrt{15}+6i\sqrt{3}}{41}
For any term t, t\times 1=t and 1t=t.