Evaluate
\frac{\left(\sqrt{3}-2\right)\left(\sqrt{5}+6i\right)}{41}\approx -0.014613478-0.039212077i
Real Part
\frac{\sqrt{5} {(\sqrt{3} - 2)}}{41} = -0.014613478263223484
Share
Copied to clipboard
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{\left(\sqrt{5}-6i\right)\left(\sqrt{5}+6i\right)}
Rationalize the denominator of \frac{-2+1\sqrt{3}}{\sqrt{5}-6i} by multiplying numerator and denominator by \sqrt{5}+6i.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{\left(\sqrt{5}\right)^{2}-\left(-6i\right)^{2}}
Consider \left(\sqrt{5}-6i\right)\left(\sqrt{5}+6i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{5+36}
Square \sqrt{5}. Square -6i.
\frac{\left(-2+1\sqrt{3}\right)\left(\sqrt{5}+6i\right)}{41}
Subtract -36 from 5 to get 41.
\frac{-2\sqrt{5}-12i+1\sqrt{3}\sqrt{5}+6i\sqrt{3}}{41}
Apply the distributive property by multiplying each term of -2+1\sqrt{3} by each term of \sqrt{5}+6i.
\frac{-2\sqrt{5}-12i+1\sqrt{15}+6i\sqrt{3}}{41}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-2\sqrt{5}-12i+\sqrt{15}+6i\sqrt{3}}{41}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}