Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{\left(-2\right)^{3}\times \left(\frac{1}{9}\right)^{3}}{\left(-15\right)^{4}}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(\frac{-8\times \left(\frac{1}{9}\right)^{3}}{\left(-15\right)^{4}}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate -2 to the power of 3 and get -8.
\frac{\left(\frac{-8\times \frac{1}{729}}{\left(-15\right)^{4}}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate \frac{1}{9} to the power of 3 and get \frac{1}{729}.
\frac{\left(\frac{-\frac{8}{729}}{\left(-15\right)^{4}}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Multiply -8 and \frac{1}{729} to get -\frac{8}{729}.
\frac{\left(\frac{-\frac{8}{729}}{50625}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate -15 to the power of 4 and get 50625.
\frac{\left(\frac{-8}{729\times 50625}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Express \frac{-\frac{8}{729}}{50625} as a single fraction.
\frac{\left(\frac{-8}{36905625}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Multiply 729 and 50625 to get 36905625.
\frac{\left(-\frac{8}{36905625}\right)^{3}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Fraction \frac{-8}{36905625} can be rewritten as -\frac{8}{36905625} by extracting the negative sign.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{\left(-15\right)^{7}}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate -\frac{8}{36905625} to the power of 3 and get -\frac{512}{50266389671545166015625}.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{-170859375}{2\left(-2\right)^{2}\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate -15 to the power of 7 and get -170859375.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{-170859375}{2\times 4\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Calculate -2 to the power of 2 and get 4.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{-170859375}{8\times \left(\frac{1}{9}\right)^{4}}\right)^{-2}}
Multiply 2 and 4 to get 8.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{-170859375}{8\times \frac{1}{6561}}\right)^{-2}}
Calculate \frac{1}{9} to the power of 4 and get \frac{1}{6561}.
\frac{-\frac{512}{50266389671545166015625}}{\left(\frac{-170859375}{\frac{8}{6561}}\right)^{-2}}
Multiply 8 and \frac{1}{6561} to get \frac{8}{6561}.
\frac{-\frac{512}{50266389671545166015625}}{\left(-170859375\times \frac{6561}{8}\right)^{-2}}
Divide -170859375 by \frac{8}{6561} by multiplying -170859375 by the reciprocal of \frac{8}{6561}.
\frac{-\frac{512}{50266389671545166015625}}{\left(-\frac{1121008359375}{8}\right)^{-2}}
Multiply -170859375 and \frac{6561}{8} to get -\frac{1121008359375}{8}.
\frac{-\frac{512}{50266389671545166015625}}{\frac{64}{1256659741788629150390625}}
Calculate -\frac{1121008359375}{8} to the power of -2 and get \frac{64}{1256659741788629150390625}.
-\frac{512}{50266389671545166015625}\times \frac{1256659741788629150390625}{64}
Divide -\frac{512}{50266389671545166015625} by \frac{64}{1256659741788629150390625} by multiplying -\frac{512}{50266389671545166015625} by the reciprocal of \frac{64}{1256659741788629150390625}.
-200
Multiply -\frac{512}{50266389671545166015625} and \frac{1256659741788629150390625}{64} to get -200.