Evaluate
-3b^{3}
Differentiate w.r.t. b
-9b^{2}
Share
Copied to clipboard
\frac{\left(-12\right)^{1}a^{5}b^{4}}{4^{1}a^{5}b^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(-12\right)^{1}}{4^{1}}a^{5-5}b^{4-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-12\right)^{1}}{4^{1}}a^{0}b^{4-1}
Subtract 5 from 5.
\frac{\left(-12\right)^{1}}{4^{1}}b^{4-1}
For any number a except 0, a^{0}=1.
\frac{\left(-12\right)^{1}}{4^{1}}b^{3}
Subtract 1 from 4.
-3b^{3}
Divide -12 by 4.
\frac{\mathrm{d}}{\mathrm{d}b}(-3b^{3})
Cancel out 4ba^{5} in both numerator and denominator.
3\left(-3\right)b^{3-1}
The derivative of ax^{n} is nax^{n-1}.
-9b^{3-1}
Multiply 3 times -3.
-9b^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}