Evaluate
\frac{6\sqrt{5}}{5}+\sqrt{35}+6\approx 14.599361356
Share
Copied to clipboard
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{6}{\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{7}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{5}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{6}{\sqrt{5}}
Consider \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{6}{\sqrt{5}}
Square \sqrt{7}. Square \sqrt{5}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{6}{\sqrt{5}}
Subtract 5 from 7 to get 2.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{6}{\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{7}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{5}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{6}{\sqrt{5}}
Consider \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{6}{\sqrt{5}}
Square \sqrt{7}. Square \sqrt{5}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{6}{\sqrt{5}}
Subtract 5 from 7 to get 2.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{6\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{6}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{6\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)+\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{6\sqrt{5}}{5}
Since \frac{\sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)}{2} and \frac{\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{7+\sqrt{35}+\sqrt{35}+5}{2}+\frac{6\sqrt{5}}{5}
Do the multiplications in \sqrt{7}\left(\sqrt{7}+\sqrt{5}\right)+\sqrt{5}\left(\sqrt{7}+\sqrt{5}\right).
\frac{12+2\sqrt{35}}{2}+\frac{6\sqrt{5}}{5}
Do the calculations in 7+\sqrt{35}+\sqrt{35}+5.
6+\sqrt{35}+\frac{6\sqrt{5}}{5}
Divide each term of 12+2\sqrt{35} by 2 to get 6+\sqrt{35}.
\frac{5\left(6+\sqrt{35}\right)}{5}+\frac{6\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6+\sqrt{35} times \frac{5}{5}.
\frac{5\left(6+\sqrt{35}\right)+6\sqrt{5}}{5}
Since \frac{5\left(6+\sqrt{35}\right)}{5} and \frac{6\sqrt{5}}{5} have the same denominator, add them by adding their numerators.
\frac{30+5\sqrt{35}+6\sqrt{5}}{5}
Do the multiplications in 5\left(6+\sqrt{35}\right)+6\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}