Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
To raise \frac{\sqrt{5}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Add 5 and 1 to get 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(\sqrt{5}+1\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Do the multiplications in \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Do the calculations in \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Cancel out 4 and 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
To raise \frac{\sqrt{5}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Add 5 and 1 to get 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(\sqrt{5}+1\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Do the multiplications in \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Do the calculations in \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Cancel out 4 and 4.