Evaluate
\sqrt{5}\approx 2.236067977
Expand
\sqrt{5} = 2.236067977
Share
Copied to clipboard
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
To raise \frac{\sqrt{5}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Add 5 and 1 to get 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(\sqrt{5}+1\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Do the multiplications in \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Do the calculations in \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Cancel out 4 and 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\left(\frac{\sqrt{5}-1}{2}\right)^{2}
To raise \frac{\sqrt{5}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{5}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{5-2\sqrt{5}+1}{2^{2}}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{2^{2}}
Add 5 and 1 to get 6.
\frac{\left(\sqrt{5}+1\right)^{2}}{2^{2}}-\frac{6-2\sqrt{5}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{5}+1\right)^{2}}{4}-\frac{6-2\sqrt{5}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right)}{4}
Since \frac{\left(\sqrt{5}+1\right)^{2}}{4} and \frac{6-2\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}}{4}
Do the multiplications in \left(\sqrt{5}+1\right)^{2}-\left(6-2\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Do the calculations in \left(\sqrt{5}\right)^{2}+2\sqrt{5}+1-6+2\sqrt{5}.
\sqrt{5}
Cancel out 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}