Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{2}t}{2}+1\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
Express \frac{\sqrt{2}}{2}t as a single fraction.
\left(\frac{\sqrt{2}t}{2}+\frac{2}{2}\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\left(\frac{\sqrt{2}t+2}{2}\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
Since \frac{\sqrt{2}t}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
To raise \frac{\sqrt{2}t+2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1}{2}+\frac{\sqrt{2}t}{2}\right)^{2}
Express \frac{\sqrt{2}}{2}t as a single fraction.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1+\sqrt{2}t}{2}\right)^{2}
Since \frac{1}{2} and \frac{\sqrt{2}t}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\frac{\left(1+\sqrt{2}t\right)^{2}}{2^{2}}
To raise \frac{1+\sqrt{2}t}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}t+2\right)^{2}+\left(1+\sqrt{2}t\right)^{2}}{2^{2}}
Since \frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}} and \frac{\left(1+\sqrt{2}t\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2t^{2}+4\sqrt{2}t+4+1+2\sqrt{2}t+2t^{2}}{2^{2}}
Do the multiplications in \left(\sqrt{2}t+2\right)^{2}+\left(1+\sqrt{2}t\right)^{2}.
\frac{4t^{2}+6\sqrt{2}t+5}{2^{2}}
Combine like terms in 2t^{2}+4\sqrt{2}t+4+1+2\sqrt{2}t+2t^{2}.
\frac{4t^{2}+6\sqrt{2}t+5}{4}
Expand 2^{2}.
\left(\frac{\sqrt{2}t}{2}+1\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
Express \frac{\sqrt{2}}{2}t as a single fraction.
\left(\frac{\sqrt{2}t}{2}+\frac{2}{2}\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\left(\frac{\sqrt{2}t+2}{2}\right)^{2}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
Since \frac{\sqrt{2}t}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1}{2}+\frac{\sqrt{2}}{2}t\right)^{2}
To raise \frac{\sqrt{2}t+2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1}{2}+\frac{\sqrt{2}t}{2}\right)^{2}
Express \frac{\sqrt{2}}{2}t as a single fraction.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\left(\frac{1+\sqrt{2}t}{2}\right)^{2}
Since \frac{1}{2} and \frac{\sqrt{2}t}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}}+\frac{\left(1+\sqrt{2}t\right)^{2}}{2^{2}}
To raise \frac{1+\sqrt{2}t}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}t+2\right)^{2}+\left(1+\sqrt{2}t\right)^{2}}{2^{2}}
Since \frac{\left(\sqrt{2}t+2\right)^{2}}{2^{2}} and \frac{\left(1+\sqrt{2}t\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2t^{2}+4\sqrt{2}t+4+1+2\sqrt{2}t+2t^{2}}{2^{2}}
Do the multiplications in \left(\sqrt{2}t+2\right)^{2}+\left(1+\sqrt{2}t\right)^{2}.
\frac{4t^{2}+6\sqrt{2}t+5}{2^{2}}
Combine like terms in 2t^{2}+4\sqrt{2}t+4+1+2\sqrt{2}t+2t^{2}.
\frac{4t^{2}+6\sqrt{2}t+5}{4}
Expand 2^{2}.