Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\frac{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Rationalize the denominator of \frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}+\sqrt{11}} by multiplying numerator and denominator by \sqrt{13}-\sqrt{11}.
\frac{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{11}\right)^{2}}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Consider \left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{13-11}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Square \sqrt{13}. Square \sqrt{11}.
\frac{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Subtract 11 from 13 to get 2.
\frac{\left(\sqrt{13}-\sqrt{11}\right)^{2}}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Multiply \sqrt{13}-\sqrt{11} and \sqrt{13}-\sqrt{11} to get \left(\sqrt{13}-\sqrt{11}\right)^{2}.
\frac{\left(\sqrt{13}\right)^{2}-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{13}-\sqrt{11}\right)^{2}.
\frac{13-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
The square of \sqrt{13} is 13.
\frac{13-2\sqrt{143}+\left(\sqrt{11}\right)^{2}}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
\frac{13-2\sqrt{143}+11}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
The square of \sqrt{11} is 11.
\frac{24-2\sqrt{143}}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Add 13 and 11 to get 24.
12-\sqrt{143}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Divide each term of 24-2\sqrt{143} by 2 to get 12-\sqrt{143}.
12-\sqrt{143}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}
Rationalize the denominator of \frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}} by multiplying numerator and denominator by \sqrt{13}+\sqrt{11}.
12-\sqrt{143}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
12-\sqrt{143}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{13-11}
Square \sqrt{13}. Square \sqrt{11}.
12-\sqrt{143}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{2}
Subtract 11 from 13 to get 2.
12-\sqrt{143}+\frac{\left(\sqrt{13}+\sqrt{11}\right)^{2}}{2}
Multiply \sqrt{13}+\sqrt{11} and \sqrt{13}+\sqrt{11} to get \left(\sqrt{13}+\sqrt{11}\right)^{2}.
12-\sqrt{143}+\frac{\left(\sqrt{13}\right)^{2}+2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{13}+\sqrt{11}\right)^{2}.
12-\sqrt{143}+\frac{13+2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}
The square of \sqrt{13} is 13.
12-\sqrt{143}+\frac{13+2\sqrt{143}+\left(\sqrt{11}\right)^{2}}{2}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
12-\sqrt{143}+\frac{13+2\sqrt{143}+11}{2}
The square of \sqrt{11} is 11.
12-\sqrt{143}+\frac{24+2\sqrt{143}}{2}
Add 13 and 11 to get 24.
12-\sqrt{143}+12+\sqrt{143}
Divide each term of 24+2\sqrt{143} by 2 to get 12+\sqrt{143}.
24-\sqrt{143}+\sqrt{143}
Add 12 and 12 to get 24.
24
Combine -\sqrt{143} and \sqrt{143} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}