Solve for α
\alpha =-\frac{5\beta }{4}+\frac{3}{2}
Solve for β
\beta =\frac{6-4\alpha }{5}
Share
Copied to clipboard
-8\alpha -8\beta -\frac{1}{2}\times 4+8+4\alpha +3\beta =0
Use the distributive property to multiply \alpha +\beta by -8.
-8\alpha -8\beta -2+8+4\alpha +3\beta =0
Multiply \frac{1}{2} and 4 to get 2.
-8\alpha -8\beta +6+4\alpha +3\beta =0
Add -2 and 8 to get 6.
-4\alpha -8\beta +6+3\beta =0
Combine -8\alpha and 4\alpha to get -4\alpha .
-4\alpha -5\beta +6=0
Combine -8\beta and 3\beta to get -5\beta .
-4\alpha +6=5\beta
Add 5\beta to both sides. Anything plus zero gives itself.
-4\alpha =5\beta -6
Subtract 6 from both sides.
\frac{-4\alpha }{-4}=\frac{5\beta -6}{-4}
Divide both sides by -4.
\alpha =\frac{5\beta -6}{-4}
Dividing by -4 undoes the multiplication by -4.
\alpha =-\frac{5\beta }{4}+\frac{3}{2}
Divide 5\beta -6 by -4.
-8\alpha -8\beta -\frac{1}{2}\times 4+8+4\alpha +3\beta =0
Use the distributive property to multiply \alpha +\beta by -8.
-8\alpha -8\beta -2+8+4\alpha +3\beta =0
Multiply \frac{1}{2} and 4 to get 2.
-8\alpha -8\beta +6+4\alpha +3\beta =0
Add -2 and 8 to get 6.
-4\alpha -8\beta +6+3\beta =0
Combine -8\alpha and 4\alpha to get -4\alpha .
-4\alpha -5\beta +6=0
Combine -8\beta and 3\beta to get -5\beta .
-5\beta +6=4\alpha
Add 4\alpha to both sides. Anything plus zero gives itself.
-5\beta =4\alpha -6
Subtract 6 from both sides.
\frac{-5\beta }{-5}=\frac{4\alpha -6}{-5}
Divide both sides by -5.
\beta =\frac{4\alpha -6}{-5}
Dividing by -5 undoes the multiplication by -5.
\beta =\frac{6-4\alpha }{5}
Divide 4\alpha -6 by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}