Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{4+3}{4}-\frac{5}{6}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Multiply 1 and 4 to get 4.
\frac{7}{4}-\frac{5}{6}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Add 4 and 3 to get 7.
\frac{21}{12}-\frac{10}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Least common multiple of 4 and 6 is 12. Convert \frac{7}{4} and \frac{5}{6} to fractions with denominator 12.
\frac{21-10}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Since \frac{21}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Subtract 10 from 21 to get 11.
\frac{11}{12}-\frac{4+1}{4}+\frac{3\times 3+1}{3}
Multiply 1 and 4 to get 4.
\frac{11}{12}-\frac{5}{4}+\frac{3\times 3+1}{3}
Add 4 and 1 to get 5.
\frac{11}{12}-\frac{15}{12}+\frac{3\times 3+1}{3}
Least common multiple of 12 and 4 is 12. Convert \frac{11}{12} and \frac{5}{4} to fractions with denominator 12.
\frac{11-15}{12}+\frac{3\times 3+1}{3}
Since \frac{11}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-4}{12}+\frac{3\times 3+1}{3}
Subtract 15 from 11 to get -4.
-\frac{1}{3}+\frac{3\times 3+1}{3}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
-\frac{1}{3}+\frac{9+1}{3}
Multiply 3 and 3 to get 9.
-\frac{1}{3}+\frac{10}{3}
Add 9 and 1 to get 10.
\frac{-1+10}{3}
Since -\frac{1}{3} and \frac{10}{3} have the same denominator, add them by adding their numerators.
\frac{9}{3}
Add -1 and 10 to get 9.
3
Divide 9 by 3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}