Solve for s_20
s_{20}=-1
s_{20}=1
Share
Copied to clipboard
|s_{20}|-\frac{2}{3}\left(\frac{3-5}{2}+\frac{7}{2}\right)=-\frac{2}{3}
Since \frac{3}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
|s_{20}|-\frac{2}{3}\left(\frac{-2}{2}+\frac{7}{2}\right)=-\frac{2}{3}
Subtract 5 from 3 to get -2.
|s_{20}|-\frac{2}{3}\left(-1+\frac{7}{2}\right)=-\frac{2}{3}
Divide -2 by 2 to get -1.
|s_{20}|-\frac{2}{3}\left(-\frac{2}{2}+\frac{7}{2}\right)=-\frac{2}{3}
Convert -1 to fraction -\frac{2}{2}.
|s_{20}|-\frac{2}{3}\times \frac{-2+7}{2}=-\frac{2}{3}
Since -\frac{2}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
|s_{20}|-\frac{2}{3}\times \frac{5}{2}=-\frac{2}{3}
Add -2 and 7 to get 5.
|s_{20}|-\frac{2\times 5}{3\times 2}=-\frac{2}{3}
Multiply \frac{2}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
|s_{20}|-\frac{5}{3}=-\frac{2}{3}
Cancel out 2 in both numerator and denominator.
|s_{20}|=-\frac{2}{3}+\frac{5}{3}
Add \frac{5}{3} to both sides.
|s_{20}|=\frac{-2+5}{3}
Since -\frac{2}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
|s_{20}|=\frac{3}{3}
Add -2 and 5 to get 3.
|s_{20}|=1
Divide 3 by 3 to get 1.
s_{20}=1 s_{20}=-1
Use the definition of absolute value.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}