Solve for c
\left\{\begin{matrix}\\c\in [-b,\infty)\cup (-\infty,0)\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&b<0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b\in [-\frac{|c|}{2}-\frac{c}{2}-a,-a-c)\text{, }&c<0\\b\in [\frac{-|c|-c}{2},-a-c)\text{, }&(a<\frac{|c|-c}{2}\text{ and }a\geq 0\text{ and }a\leq \frac{-|c|-c}{2})\text{ or }(a>0\text{ and }a<-c)\\b\geq 0\text{, }&(a>\frac{-|c|-c}{2}\text{ and }a\geq 0)\text{ or }(a<0\text{ and }a\leq \frac{|c|-c}{2})\text{ or }(a\geq -c\text{ and }a\leq \frac{|c|-c}{2})\text{ or }(a\geq -c\text{ and }a\geq 0)\text{ or }(a>-c\text{ and }a\leq 0)\\b\geq -\frac{|c|}{2}-\frac{c}{2}-a\text{, }&a\leq \frac{-|c|-c}{2}\\b\geq \frac{-|c|-c}{2}\text{, }&(a\geq 0\text{ and }a\leq \frac{-|c|-c}{2})\text{ or }(a>0\text{ and }a\leq -c)\\b<-a-c\text{, }&(a>-c\text{ and }a<0)\text{ or }(a>-c\text{ and }a\geq \frac{-|c|-c}{2})\\b<0\text{, }&(a\leq \frac{|c|-c}{2}\text{ and }a<0)\text{ or }(a\geq \frac{-|c|-c}{2}\text{ and }a\leq \frac{|c|-c}{2})\text{ or }(a\leq -c\text{ and }a<0)\text{ or }(a\geq \frac{-|c|-c}{2}\text{ and }a\geq 0)\text{ or }(a\geq \frac{-|c|-c}{2}\text{ and }a\leq -c)\\b\geq -a-c\text{, }&(a<-c\text{ and }a\leq \frac{|c|-c}{2})\text{ or }(a\geq 0\text{ and }a<-c)\\b\in [-a-c,\frac{|c|}{2}-\frac{c}{2}-a]\text{, }&(c>0\text{ and }a>0)\text{ or }(a<0\text{ and }a\leq \frac{|c|-c}{2})\\b\in [-a-c,0)\text{, }&a>-c\text{ and }c<0\text{ and }a\leq 0\\b=-a-c\text{, }&c\leq 0\text{ and }(a\geq 0\text{ or }a\geq -c)\\b\in [-a-c,\frac{|c|-c}{2}]\text{, }&(a\geq \frac{-|c|-c}{2}\text{ and }a\geq 0)\text{ or }(a\leq 0\text{ and }a\geq \frac{-|c|-c}{2}\text{ and }a\leq \frac{|c|-c}{2})\\b\in [-\frac{|c|}{2}-\frac{c}{2}-a,\frac{|c|-c}{2}]\text{, }&(a\geq \frac{-|c|-c}{2}\text{ and }a\geq 0)\text{ or }(a\geq -|c|\text{ and }a<0\text{ and }a\geq \frac{-|c|-c}{2}\text{ and }a\leq \frac{|c|-c}{2})\\b\in [\frac{-|c|-c}{2},\frac{|c|}{2}-\frac{c}{2}-a]\text{, }&(a\leq \frac{|c|-c}{2}\text{ and }a<0)\text{ or }(a<|c|\text{ and }a>0\text{ and }a\geq \frac{-|c|-c}{2}\text{ and }a\leq \frac{|c|-c}{2})\\b\in [\frac{-|c|-c}{2},\frac{|c|-c}{2}]\text{, }&a=0\\b\in [\frac{-|c|-c}{2},-a-c)\text{, }&(a<\frac{|c|-c}{2}\text{ and }a\geq 0\text{ and }a\geq \frac{-|c|-c}{2})\text{ or }(a<\frac{|c|-c}{2}\text{ and }a<0)\\b\leq \frac{|c|}{2}-\frac{c}{2}-a\text{, }&a>\frac{|c|-c}{2}\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}