Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1-\frac{1}{2}\times 6a^{2}=7
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of -1 is 1.
1-3a^{2}=7
Multiply \frac{1}{2} and 6 to get 3.
-3a^{2}=7-1
Subtract 1 from both sides.
-3a^{2}=6
Subtract 1 from 7 to get 6.
a^{2}=\frac{6}{-3}
Divide both sides by -3.
a^{2}=-2
Divide 6 by -3 to get -2.
a=\sqrt{2}i a=-\sqrt{2}i
The equation is now solved.
1-\frac{1}{2}\times 6a^{2}=7
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of -1 is 1.
1-3a^{2}=7
Multiply \frac{1}{2} and 6 to get 3.
1-3a^{2}-7=0
Subtract 7 from both sides.
-6-3a^{2}=0
Subtract 7 from 1 to get -6.
-3a^{2}-6=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
Square 0.
a=\frac{0±\sqrt{12\left(-6\right)}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{0±\sqrt{-72}}{2\left(-3\right)}
Multiply 12 times -6.
a=\frac{0±6\sqrt{2}i}{2\left(-3\right)}
Take the square root of -72.
a=\frac{0±6\sqrt{2}i}{-6}
Multiply 2 times -3.
a=-\sqrt{2}i
Now solve the equation a=\frac{0±6\sqrt{2}i}{-6} when ± is plus.
a=\sqrt{2}i
Now solve the equation a=\frac{0±6\sqrt{2}i}{-6} when ± is minus.
a=-\sqrt{2}i a=\sqrt{2}i
The equation is now solved.