| - \frac { 1 } { 3 } | \cdot | 36,9 | + | - 12,5 | : 2,5
Evaluate
17,3
Factor
\frac{173}{2 \cdot 5} = 17\frac{3}{10} = 17.3
Share
Copied to clipboard
\frac{1}{3}|36,9|+\frac{|-12,5|}{2,5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{3} is \frac{1}{3}.
\frac{1}{3}\times 36,9+\frac{|-12,5|}{2,5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 36,9 is 36,9.
\frac{1}{3}\times \frac{369}{10}+\frac{|-12,5|}{2,5}
Convert decimal number 36,9 to fraction \frac{369}{10}.
\frac{1\times 369}{3\times 10}+\frac{|-12,5|}{2,5}
Multiply \frac{1}{3} times \frac{369}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{369}{30}+\frac{|-12,5|}{2,5}
Do the multiplications in the fraction \frac{1\times 369}{3\times 10}.
\frac{123}{10}+\frac{|-12,5|}{2,5}
Reduce the fraction \frac{369}{30} to lowest terms by extracting and canceling out 3.
\frac{123}{10}+\frac{12,5}{2,5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -12,5 is 12,5.
\frac{123}{10}+\frac{125}{25}
Expand \frac{12,5}{2,5} by multiplying both numerator and the denominator by 10.
\frac{123}{10}+5
Divide 125 by 25 to get 5.
\frac{123}{10}+\frac{50}{10}
Convert 5 to fraction \frac{50}{10}.
\frac{123+50}{10}
Since \frac{123}{10} and \frac{50}{10} have the same denominator, add them by adding their numerators.
\frac{173}{10}
Add 123 and 50 to get 173.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}