Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{|\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}|}{\left(|2+3i|\right)^{2}}
Multiply both numerator and denominator of \frac{3-2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
\frac{|\frac{5-12i}{13}|}{\left(|2+3i|\right)^{2}}
Do the multiplications in \frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
\frac{|\frac{5}{13}-\frac{12}{13}i|}{\left(|2+3i|\right)^{2}}
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
\frac{1}{\left(|2+3i|\right)^{2}}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{5}{13}-\frac{12}{13}i is 1.
\frac{1}{\left(\sqrt{13}\right)^{2}}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2+3i is \sqrt{13}.
\frac{1}{13}
The square of \sqrt{13} is 13.
Re(\frac{|\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}|}{\left(|2+3i|\right)^{2}})
Multiply both numerator and denominator of \frac{3-2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{|\frac{5-12i}{13}|}{\left(|2+3i|\right)^{2}})
Do the multiplications in \frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(\frac{|\frac{5}{13}-\frac{12}{13}i|}{\left(|2+3i|\right)^{2}})
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
Re(\frac{1}{\left(|2+3i|\right)^{2}})
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{5}{13}-\frac{12}{13}i is 1.
Re(\frac{1}{\left(\sqrt{13}\right)^{2}})
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2+3i is \sqrt{13}.
Re(\frac{1}{13})
The square of \sqrt{13} is 13.
\frac{1}{13}
The real part of \frac{1}{13} is \frac{1}{13}.