Evaluate
\frac{1}{13}\approx 0.076923077
Real Part
\frac{1}{13} = 0.07692307692307693
Quiz
Complex Number
5 problems similar to:
| \frac { 3 - 2 i } { 3 + 2 i } | : | ( 2 + 3 i ) ^ { 2 } |
Share
Copied to clipboard
\frac{|\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}|}{\left(|2+3i|\right)^{2}}
Multiply both numerator and denominator of \frac{3-2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
\frac{|\frac{5-12i}{13}|}{\left(|2+3i|\right)^{2}}
Do the multiplications in \frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
\frac{|\frac{5}{13}-\frac{12}{13}i|}{\left(|2+3i|\right)^{2}}
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
\frac{1}{\left(|2+3i|\right)^{2}}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{5}{13}-\frac{12}{13}i is 1.
\frac{1}{\left(\sqrt{13}\right)^{2}}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2+3i is \sqrt{13}.
\frac{1}{13}
The square of \sqrt{13} is 13.
Re(\frac{|\frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}|}{\left(|2+3i|\right)^{2}})
Multiply both numerator and denominator of \frac{3-2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{|\frac{5-12i}{13}|}{\left(|2+3i|\right)^{2}})
Do the multiplications in \frac{\left(3-2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(\frac{|\frac{5}{13}-\frac{12}{13}i|}{\left(|2+3i|\right)^{2}})
Divide 5-12i by 13 to get \frac{5}{13}-\frac{12}{13}i.
Re(\frac{1}{\left(|2+3i|\right)^{2}})
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of \frac{5}{13}-\frac{12}{13}i is 1.
Re(\frac{1}{\left(\sqrt{13}\right)^{2}})
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 2+3i is \sqrt{13}.
Re(\frac{1}{13})
The square of \sqrt{13} is 13.
\frac{1}{13}
The real part of \frac{1}{13} is \frac{1}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}