| \frac { 2 } { 3 } \times ( 2 \frac { 2 } { 5 } - \frac { 3 } { 10 } )
Evaluate
\frac{7}{5}=1.4
Factor
\frac{7}{5} = 1\frac{2}{5} = 1.4
Share
Copied to clipboard
|\frac{2}{3}\left(\frac{10+2}{5}-\frac{3}{10}\right)|
Multiply 2 and 5 to get 10.
|\frac{2}{3}\left(\frac{12}{5}-\frac{3}{10}\right)|
Add 10 and 2 to get 12.
|\frac{2}{3}\left(\frac{24}{10}-\frac{3}{10}\right)|
Least common multiple of 5 and 10 is 10. Convert \frac{12}{5} and \frac{3}{10} to fractions with denominator 10.
|\frac{2}{3}\times \frac{24-3}{10}|
Since \frac{24}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
|\frac{2}{3}\times \frac{21}{10}|
Subtract 3 from 24 to get 21.
|\frac{2\times 21}{3\times 10}|
Multiply \frac{2}{3} times \frac{21}{10} by multiplying numerator times numerator and denominator times denominator.
|\frac{42}{30}|
Do the multiplications in the fraction \frac{2\times 21}{3\times 10}.
|\frac{7}{5}|
Reduce the fraction \frac{42}{30} to lowest terms by extracting and canceling out 6.
\frac{7}{5}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{7}{5} is \frac{7}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}