Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-6a+9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-3\right)^{2}.
a+b=-6 ab=9
To solve the equation, factor a^{2}-6a+9 using formula a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-3 b=-3
The solution is the pair that gives sum -6.
\left(a-3\right)\left(a-3\right)
Rewrite factored expression \left(a+a\right)\left(a+b\right) using the obtained values.
\left(a-3\right)^{2}
Rewrite as a binomial square.
a=3
To find equation solution, solve a-3=0.
a^{2}-6a+9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-3\right)^{2}.
a+b=-6 ab=1\times 9=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba+9. To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-3 b=-3
The solution is the pair that gives sum -6.
\left(a^{2}-3a\right)+\left(-3a+9\right)
Rewrite a^{2}-6a+9 as \left(a^{2}-3a\right)+\left(-3a+9\right).
a\left(a-3\right)-3\left(a-3\right)
Factor out a in the first and -3 in the second group.
\left(a-3\right)\left(a-3\right)
Factor out common term a-3 by using distributive property.
\left(a-3\right)^{2}
Rewrite as a binomial square.
a=3
To find equation solution, solve a-3=0.
a^{2}-6a+9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-3\right)^{2}.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multiply -4 times 9.
a=\frac{-\left(-6\right)±\sqrt{0}}{2}
Add 36 to -36.
a=-\frac{-6}{2}
Take the square root of 0.
a=\frac{6}{2}
The opposite of -6 is 6.
a=3
Divide 6 by 2.
\sqrt{\left(a-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
a-3=0 a-3=0
Simplify.
a=3 a=3
Add 3 to both sides of the equation.
a=3
The equation is now solved. Solutions are the same.