Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-9y-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-18\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-9\right)±\sqrt{81-4\left(-18\right)}}{2}
Square -9.
y=\frac{-\left(-9\right)±\sqrt{81+72}}{2}
Multiply -4 times -18.
y=\frac{-\left(-9\right)±\sqrt{153}}{2}
Add 81 to 72.
y=\frac{-\left(-9\right)±3\sqrt{17}}{2}
Take the square root of 153.
y=\frac{9±3\sqrt{17}}{2}
The opposite of -9 is 9.
y=\frac{3\sqrt{17}+9}{2}
Now solve the equation y=\frac{9±3\sqrt{17}}{2} when ± is plus. Add 9 to 3\sqrt{17}.
y=\frac{9-3\sqrt{17}}{2}
Now solve the equation y=\frac{9±3\sqrt{17}}{2} when ± is minus. Subtract 3\sqrt{17} from 9.
y^{2}-9y-18=\left(y-\frac{3\sqrt{17}+9}{2}\right)\left(y-\frac{9-3\sqrt{17}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9+3\sqrt{17}}{2} for x_{1} and \frac{9-3\sqrt{17}}{2} for x_{2}.