Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-20y+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-20\right)±\sqrt{400-4\times 10}}{2}
Square -20.
y=\frac{-\left(-20\right)±\sqrt{400-40}}{2}
Multiply -4 times 10.
y=\frac{-\left(-20\right)±\sqrt{360}}{2}
Add 400 to -40.
y=\frac{-\left(-20\right)±6\sqrt{10}}{2}
Take the square root of 360.
y=\frac{20±6\sqrt{10}}{2}
The opposite of -20 is 20.
y=\frac{6\sqrt{10}+20}{2}
Now solve the equation y=\frac{20±6\sqrt{10}}{2} when ± is plus. Add 20 to 6\sqrt{10}.
y=3\sqrt{10}+10
Divide 20+6\sqrt{10} by 2.
y=\frac{20-6\sqrt{10}}{2}
Now solve the equation y=\frac{20±6\sqrt{10}}{2} when ± is minus. Subtract 6\sqrt{10} from 20.
y=10-3\sqrt{10}
Divide 20-6\sqrt{10} by 2.
y^{2}-20y+10=\left(y-\left(3\sqrt{10}+10\right)\right)\left(y-\left(10-3\sqrt{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10+3\sqrt{10} for x_{1} and 10-3\sqrt{10} for x_{2}.