Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-208y-26700=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-208\right)±\sqrt{\left(-208\right)^{2}-4\left(-26700\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-208\right)±\sqrt{43264-4\left(-26700\right)}}{2}
Square -208.
y=\frac{-\left(-208\right)±\sqrt{43264+106800}}{2}
Multiply -4 times -26700.
y=\frac{-\left(-208\right)±\sqrt{150064}}{2}
Add 43264 to 106800.
y=\frac{-\left(-208\right)±4\sqrt{9379}}{2}
Take the square root of 150064.
y=\frac{208±4\sqrt{9379}}{2}
The opposite of -208 is 208.
y=\frac{4\sqrt{9379}+208}{2}
Now solve the equation y=\frac{208±4\sqrt{9379}}{2} when ± is plus. Add 208 to 4\sqrt{9379}.
y=2\sqrt{9379}+104
Divide 208+4\sqrt{9379} by 2.
y=\frac{208-4\sqrt{9379}}{2}
Now solve the equation y=\frac{208±4\sqrt{9379}}{2} when ± is minus. Subtract 4\sqrt{9379} from 208.
y=104-2\sqrt{9379}
Divide 208-4\sqrt{9379} by 2.
y^{2}-208y-26700=\left(y-\left(2\sqrt{9379}+104\right)\right)\left(y-\left(104-2\sqrt{9379}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 104+2\sqrt{9379} for x_{1} and 104-2\sqrt{9379} for x_{2}.