Solve for y
y=2\sqrt{6}\approx 4.898979486
y=-2\sqrt{6}\approx -4.898979486
Graph
Share
Copied to clipboard
y^{2}=2\times 2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
y^{2}=2\times 4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
y^{2}=2\times 4\times 3
The square of \sqrt{3} is 3.
y^{2}=2\times 12
Multiply 4 and 3 to get 12.
y^{2}=24
Multiply 2 and 12 to get 24.
y=2\sqrt{6} y=-2\sqrt{6}
Take the square root of both sides of the equation.
y^{2}=2\times 2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
y^{2}=2\times 4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
y^{2}=2\times 4\times 3
The square of \sqrt{3} is 3.
y^{2}=2\times 12
Multiply 4 and 3 to get 12.
y^{2}=24
Multiply 2 and 12 to get 24.
y^{2}-24=0
Subtract 24 from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-24\right)}}{2}
Square 0.
y=\frac{0±\sqrt{96}}{2}
Multiply -4 times -24.
y=\frac{0±4\sqrt{6}}{2}
Take the square root of 96.
y=2\sqrt{6}
Now solve the equation y=\frac{0±4\sqrt{6}}{2} when ± is plus.
y=-2\sqrt{6}
Now solve the equation y=\frac{0±4\sqrt{6}}{2} when ± is minus.
y=2\sqrt{6} y=-2\sqrt{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}