Solve for y (complex solution)
y=-\left(\sin(x)\right)^{\frac{x^{4}}{2}}
y=\left(\sin(x)\right)^{\frac{x^{4}}{2}}
Solve for y
y=\sqrt{\left(\sin(x)\right)^{x^{4}}}
y=-\sqrt{\left(\sin(x)\right)^{x^{4}}}\text{, }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(x>2\pi n_{2}\text{ and }x<\pi \left(2n_{2}+1\right)\right)\text{ and }\left(\sin(x)\right)^{x^{4}}\geq 0\right)\text{ or }\left(\exists n_{2}\in \mathrm{Z}\text{ : }\left(x>2\pi n_{2}\text{ and }x<\pi \left(2n_{2}+1\right)\right)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(x>\pi \left(2n_{4}+1\right)\text{ and }x<2\pi \left(n_{4}+1\right)\right)\text{ and }Denominator(x^{4})\text{bmod}2\neq 1\right)\text{ or }\left(\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }x\neq 0\text{ and }\left(\sin(x)\right)^{x^{4}}\geq 0\right)\text{ or }\left(Denominator(x^{4})\text{bmod}2\neq 1\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(x>\pi \left(2n_{4}+1\right)\text{ and }x<2\pi \left(n_{4}+1\right)\right)\right)\text{ or }\left(\exists n_{3}\in \mathrm{Z}\text{ : }\left(x>\pi \left(2n_{3}-1\right)\text{ and }x<2\pi n_{3}\right)\text{ and }Denominator(x^{4})\text{bmod}2=1\text{ and }\left(\sin(x)\right)^{x^{4}}\geq 0\right)
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}