Solve for y
y=12
Graph
Share
Copied to clipboard
yy^{2}=48\times 36
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y^{3}=48\times 36
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y^{3}=1728
Multiply 48 and 36 to get 1728.
y^{3}-1728=0
Subtract 1728 from both sides.
±1728,±864,±576,±432,±288,±216,±192,±144,±108,±96,±72,±64,±54,±48,±36,±32,±27,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1728 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
y=12
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
y^{2}+12y+144=0
By Factor theorem, y-k is a factor of the polynomial for each root k. Divide y^{3}-1728 by y-12 to get y^{2}+12y+144. Solve the equation where the result equals to 0.
y=\frac{-12±\sqrt{12^{2}-4\times 1\times 144}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 12 for b, and 144 for c in the quadratic formula.
y=\frac{-12±\sqrt{-432}}{2}
Do the calculations.
y\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
y=12
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}