Factor
\left(y+3\right)\left(y+5\right)
Evaluate
\left(y+3\right)\left(y+5\right)
Graph
Share
Copied to clipboard
a+b=8 ab=1\times 15=15
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by+15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=3 b=5
The solution is the pair that gives sum 8.
\left(y^{2}+3y\right)+\left(5y+15\right)
Rewrite y^{2}+8y+15 as \left(y^{2}+3y\right)+\left(5y+15\right).
y\left(y+3\right)+5\left(y+3\right)
Factor out y in the first and 5 in the second group.
\left(y+3\right)\left(y+5\right)
Factor out common term y+3 by using distributive property.
y^{2}+8y+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-8±\sqrt{8^{2}-4\times 15}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-8±\sqrt{64-4\times 15}}{2}
Square 8.
y=\frac{-8±\sqrt{64-60}}{2}
Multiply -4 times 15.
y=\frac{-8±\sqrt{4}}{2}
Add 64 to -60.
y=\frac{-8±2}{2}
Take the square root of 4.
y=-\frac{6}{2}
Now solve the equation y=\frac{-8±2}{2} when ± is plus. Add -8 to 2.
y=-3
Divide -6 by 2.
y=-\frac{10}{2}
Now solve the equation y=\frac{-8±2}{2} when ± is minus. Subtract 2 from -8.
y=-5
Divide -10 by 2.
y^{2}+8y+15=\left(y-\left(-3\right)\right)\left(y-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -5 for x_{2}.
y^{2}+8y+15=\left(y+3\right)\left(y+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}