Solve for y (complex solution)
y=\sqrt{182}-3\approx 10.490737563
y=-\left(\sqrt{182}+3\right)\approx -16.490737563
Solve for y
y=\sqrt{182}-3\approx 10.490737563
y=-\sqrt{182}-3\approx -16.490737563
Graph
Share
Copied to clipboard
y^{2}+6y-173=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-6±\sqrt{6^{2}-4\left(-173\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -173 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-173\right)}}{2}
Square 6.
y=\frac{-6±\sqrt{36+692}}{2}
Multiply -4 times -173.
y=\frac{-6±\sqrt{728}}{2}
Add 36 to 692.
y=\frac{-6±2\sqrt{182}}{2}
Take the square root of 728.
y=\frac{2\sqrt{182}-6}{2}
Now solve the equation y=\frac{-6±2\sqrt{182}}{2} when ± is plus. Add -6 to 2\sqrt{182}.
y=\sqrt{182}-3
Divide -6+2\sqrt{182} by 2.
y=\frac{-2\sqrt{182}-6}{2}
Now solve the equation y=\frac{-6±2\sqrt{182}}{2} when ± is minus. Subtract 2\sqrt{182} from -6.
y=-\sqrt{182}-3
Divide -6-2\sqrt{182} by 2.
y=\sqrt{182}-3 y=-\sqrt{182}-3
The equation is now solved.
y^{2}+6y-173=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}+6y-173-\left(-173\right)=-\left(-173\right)
Add 173 to both sides of the equation.
y^{2}+6y=-\left(-173\right)
Subtracting -173 from itself leaves 0.
y^{2}+6y=173
Subtract -173 from 0.
y^{2}+6y+3^{2}=173+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+6y+9=173+9
Square 3.
y^{2}+6y+9=182
Add 173 to 9.
\left(y+3\right)^{2}=182
Factor y^{2}+6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{182}
Take the square root of both sides of the equation.
y+3=\sqrt{182} y+3=-\sqrt{182}
Simplify.
y=\sqrt{182}-3 y=-\sqrt{182}-3
Subtract 3 from both sides of the equation.
y^{2}+6y-173=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-6±\sqrt{6^{2}-4\left(-173\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -173 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-173\right)}}{2}
Square 6.
y=\frac{-6±\sqrt{36+692}}{2}
Multiply -4 times -173.
y=\frac{-6±\sqrt{728}}{2}
Add 36 to 692.
y=\frac{-6±2\sqrt{182}}{2}
Take the square root of 728.
y=\frac{2\sqrt{182}-6}{2}
Now solve the equation y=\frac{-6±2\sqrt{182}}{2} when ± is plus. Add -6 to 2\sqrt{182}.
y=\sqrt{182}-3
Divide -6+2\sqrt{182} by 2.
y=\frac{-2\sqrt{182}-6}{2}
Now solve the equation y=\frac{-6±2\sqrt{182}}{2} when ± is minus. Subtract 2\sqrt{182} from -6.
y=-\sqrt{182}-3
Divide -6-2\sqrt{182} by 2.
y=\sqrt{182}-3 y=-\sqrt{182}-3
The equation is now solved.
y^{2}+6y-173=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
y^{2}+6y-173-\left(-173\right)=-\left(-173\right)
Add 173 to both sides of the equation.
y^{2}+6y=-\left(-173\right)
Subtracting -173 from itself leaves 0.
y^{2}+6y=173
Subtract -173 from 0.
y^{2}+6y+3^{2}=173+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+6y+9=173+9
Square 3.
y^{2}+6y+9=182
Add 173 to 9.
\left(y+3\right)^{2}=182
Factor y^{2}+6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{182}
Take the square root of both sides of the equation.
y+3=\sqrt{182} y+3=-\sqrt{182}
Simplify.
y=\sqrt{182}-3 y=-\sqrt{182}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}