Solve for x
x=\frac{2y}{1-3y}
y\neq \frac{1}{3}\text{ and }y\neq 0
Solve for y
y=\frac{x}{3x+2}
x\neq 0\text{ and }x\neq -\frac{2}{3}
Graph
Share
Copied to clipboard
y^{-1}x-3x=2
Subtract 3x from both sides.
-3x+\frac{1}{y}x=2
Reorder the terms.
-3xy+1x=2y
Multiply both sides of the equation by y.
-3xy+x=2y
Reorder the terms.
\left(-3y+1\right)x=2y
Combine all terms containing x.
\left(1-3y\right)x=2y
The equation is in standard form.
\frac{\left(1-3y\right)x}{1-3y}=\frac{2y}{1-3y}
Divide both sides by -3y+1.
x=\frac{2y}{1-3y}
Dividing by -3y+1 undoes the multiplication by -3y+1.
\frac{1}{y}x=3x+2
Reorder the terms.
1x=3xy+y\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3xy+y\times 2=1x
Swap sides so that all variable terms are on the left hand side.
3xy+2y=x
Reorder the terms.
\left(3x+2\right)y=x
Combine all terms containing y.
\frac{\left(3x+2\right)y}{3x+2}=\frac{x}{3x+2}
Divide both sides by 3x+2.
y=\frac{x}{3x+2}
Dividing by 3x+2 undoes the multiplication by 3x+2.
y=\frac{x}{3x+2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}