Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{6}=6x^{3}-125
Calculate 5 to the power of 3 and get 125.
x^{6}-6x^{3}=-125
Subtract 6x^{3} from both sides.
x^{6}-6x^{3}+125=0
Add 125 to both sides.
t^{2}-6t+125=0
Substitute t for x^{3}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -6 for b, and 125 for c in the quadratic formula.
t=\frac{6±\sqrt{-464}}{2}
Do the calculations.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Solve the equation t=\frac{6±\sqrt{-464}}{2} when ± is plus and when ± is minus.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.