Solve for x
x=\frac{2^{\frac{4}{5}}\sqrt[5]{123-55\sqrt{5}}}{2}\approx 0.381966011
x = \frac{2 ^ {\frac{4}{5}} \sqrt[5]{55 \sqrt{5} + 123}}{2} \approx 2.618033989
Graph
Share
Copied to clipboard
x^{5}x^{5}+1=123x^{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{5}.
x^{10}+1=123x^{5}
To multiply powers of the same base, add their exponents. Add 5 and 5 to get 10.
x^{10}+1-123x^{5}=0
Subtract 123x^{5} from both sides.
t^{2}-123t+1=0
Substitute t for x^{5}.
t=\frac{-\left(-123\right)±\sqrt{\left(-123\right)^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -123 for b, and 1 for c in the quadratic formula.
t=\frac{123±55\sqrt{5}}{2}
Do the calculations.
t=\frac{55\sqrt{5}+123}{2} t=\frac{123-55\sqrt{5}}{2}
Solve the equation t=\frac{123±55\sqrt{5}}{2} when ± is plus and when ± is minus.
x=\sqrt[5]{\frac{55\sqrt{5}+123}{2}} x=\sqrt[5]{\frac{123-55\sqrt{5}}{2}}
Since x=t^{5}, the solutions are obtained by evaluating x=\sqrt[5]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}