Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x^{4}+3x^{3}+3x\right)}{3}+\frac{10x}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4}+3x^{3}+3x times \frac{3}{3}.
\frac{3\left(x^{4}+3x^{3}+3x\right)+10x}{3}
Since \frac{3\left(x^{4}+3x^{3}+3x\right)}{3} and \frac{10x}{3} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+9x^{3}+9x+10x}{3}
Do the multiplications in 3\left(x^{4}+3x^{3}+3x\right)+10x.
\frac{3x^{4}+9x^{3}+19x}{3}
Combine like terms in 3x^{4}+9x^{3}+9x+10x.
\frac{3x^{4}+9x^{3}+10x+9x}{3}
Factor out \frac{1}{3}.
x\left(3x^{3}+9x^{2}+19\right)
Consider 3x^{4}+9x^{3}+10x+9x. Factor out x.
\frac{x\left(3x^{3}+9x^{2}+19\right)}{3}
Rewrite the complete factored expression. Polynomial 3x^{3}+9x^{2}+19 is not factored since it does not have any rational roots.