Solve for x
x=50
Graph
Share
Copied to clipboard
\left(2x-1\right)x^{3}-x^{3}\left(2x-1\right)=50-x
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2x-1.
2x^{4}-x^{3}-x^{3}\left(2x-1\right)=50-x
Use the distributive property to multiply 2x-1 by x^{3}.
2x^{4}-x^{3}-2x^{4}+x^{3}=50-x
Use the distributive property to multiply -x^{3} by 2x-1.
-x^{3}+x^{3}=50-x
Combine 2x^{4} and -2x^{4} to get 0.
0=50-x
Combine -x^{3} and x^{3} to get 0.
50-x=0
Swap sides so that all variable terms are on the left hand side.
-x=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
x=50
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}